

Welcome to the h Documentation!

h [https://github.com/hypothesis/h] is the web app that serves most of the
https://hypothes.is/ website, including the web annotations API at
https://hypothes.is/api/.
The Hypothesis client [https://github.com/hypothesis/client]
is a browser-based annotator that is a client for h’s API, see
the client’s own documentation site [https://h.readthedocs.io/projects/client/]
for docs about the client.

This documentation is for:

	Developers working with data stored in h

	Contributors to h

Contents

	The Hypothesis community

	Advice for publishers

	Using the Hypothesis API

	Developing Hypothesis

The Hypothesis community

Please be courteous and respectful in your communication on Slack (request an invite [https://join.slack.com/t/hypothesis-open/shared_invite/enQtMzAxMTEwODAwMTgxLWEwZWYyYjIwYjU3NmFmNDZkOTlmZTcwNzAzMTY5MjFkMTFlZGFiM2Y1NmQxMzQ3NzY4ZjhlMjE5ZjRjNmRlZjg] or log in once you’ve created an account [https://hypothesis-open.slack.com/]), IRC
(#hypothes.is [http://webchat.freenode.net/?channels=hypothes.is] on freenode.net [http://freenode.net/]), the mailing list (subscribe,
archive [https://groups.google.com/a/list.hypothes.is/forum/#!forum/dev]), and GitHub [http://github.com/hypothesis/h]. Humor is appreciated, but remember that some nuance
may be lost in the medium and plan accordingly.

If you plan to be an active contributor please join our mailing list
to coordinate development effort. This coordination helps us avoid
duplicating efforts and raises the level of collaboration. For small
fixes, feel free to open a pull request without any prior discussion.

Advice for publishers

If you publish content on the web and want to allow people to annotate your
content, the following documents will help you get started.

	Generating authorization grant tokens

Generating authorization grant tokens

Warning

This document describes an integration mechanism that is undergoing
early-stage testing. The details of the token format may change in the
future.

In order to allow your users (i.e. those whose accounts and authentication
status you control) to annotate using a copy of Hypothesis embedded on your
pages, you can ask us to register your site as a special kind of OAuth client.

We will issue you with a Client ID and a Client secret. These
will allow you generate time-limited “authorization grant tokens” which can be
supplied as configuration to the Hypothesis sidebar, and which will allow your
users to annotate without needing to log in again. This document describes how
to generate those tokens.

Overview

You will have been provided with the following:

	Client ID

	A unique identifier for your client account. It’s a UUID and will look
something like this: 4a2fa3b4-c160-4436-82d3-148f602c9aa8

	Client secret

	A secret string which you MUST NOT reveal publicly, and which is used to
cryptographically sign the grant tokens you will generate.

In addition, you will have provided us with what we call an “authority” for your
account. The authority is a DNS domain name and acts as a unique namespace for
your user’s accounts. For example, if your site lives at
https://example.com, you may choose to use example.com as your
authority, although we do not currently require any particular correspondence
between your web address and your account authority.

You will use these three pieces of information, in combination with your user’s
unique usernames, to generate the grant token.

The grant token is a JSON Web Token (JWT) [https://jwt.io/] and we strongly
recommend that you use an existing JWT library for your programming environment
if you can. You can find a list of JWT client libraries here [https://jwt.io/#libraries-io].

Token format

A grant token is a JWT, signed with the Client secret using the
HS256 algorithm, with a payload in a specific format, given below. Let’s
assume that:

	Your Client ID is 4a2fa3b4-c160-4436-82d3-148f602c9aa8.

	Your authority is customwidgets.com.

	The user has a username of samina.mian.

	The current time is 2016-11-08T11:35:45Z, which corresponds to a UTC Unix
timestamp of 1478601345.

	The token should be valid for a few minutes, e.g. until 1478601645,
expressed as a UTC Unix timestamp. The server limits the lifetime of a token
(the difference between the nbf and exp timestamps) to 10 minutes.

	The token should be valid for the annotation service running at
hypothes.is.

With these data, we can construct a token payload. It should look like the
following:

{
 "aud": "hypothes.is",
 "iss": "4a2fa3b4-c160-4436-82d3-148f602c9aa8",
 "sub": "acct:samina.mian@customwidgets.com",
 "nbf": 1478601345,
 "exp": 1478601645
}

You should sign this payload using the HS256 JWT-signing algorithm, using
the Client secret as the key. The result will look something like this:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiI0QTJGQTNCNC1DMTYwLTQ0MzYtODJEMy0xNDhGNjAyQzlBQTgiLCJuYmYiOjE0Nzg2MDEzNDUsImF1ZCI6Imh5cG90aGVzLmlzIiwiZXhwIjoxNDc4NjAxOTQ1LCJzdWIiOiJhY2N0OnNhbWluYS5taWFuQGN1c3RvbXdpZGdldHMuY29tIn0.65-ZErbLu1q8LpT_K8FAOQO984hAyN1XFBe1rC3lgfk

See also

RFC7523 [https://tools.ietf.org/html/rfc7523], “JSON Web Token (JWT)
Profile for OAuth 2.0 Client Authentication and Authorization Grants”. Note
that we currently only support the HS256 signing algorithm, and not the
public-key RS256 signing algorithm mentioned in the RFC.

Examples

This section contains complete example code for generating a JWT in various
common programming environments.

Python

We recommend using PyJWT [https://pyjwt.readthedocs.io/en/latest/]:

import datetime
import jwt

IMPORTANT: replace these values with those for your client account!
CLIENT_AUTHORITY = 'customwidgets.com'
CLIENT_ID = '4a2fa3b4-c160-4436-82d3-148f602c9aa8'
CLIENT_SECRET = '5SquUVG0Tpg57ywoxUbPPgjtK0OkX1ttipVlfBRRrpo'

def generate_grant_token(username):
 now = datetime.datetime.utcnow()
 userid = 'acct:{username}@{authority}'.format(username=username,
 authority=CLIENT_AUTHORITY)
 payload = {
 'aud': 'hypothes.is',
 'iss': CLIENT_ID,
 'sub': userid,
 'nbf': now,
 'exp': now + datetime.timedelta(minutes=10),
 }
 return jwt.encode(payload, CLIENT_SECRET, algorithm='HS256')

Ruby

We recommend using ruby-jwt [https://jwt.github.io/ruby-jwt/]:

require 'jwt'

IMPORTANT: replace these values with those for your client account!
CLIENT_AUTHORITY = 'customwidgets.com'
CLIENT_ID = '4a2fa3b4-c160-4436-82d3-148f602c9aa8'
CLIENT_SECRET = '5SquUVG0Tpg57ywoxUbPPgjtK0OkX1ttipVlfBRRrpo'

def generate_grant_token(username)
 now = Time.now.to_i
 userid = "acct:#{username}@#{CLIENT_AUTHORITY}"
 payload = {
 aud: "hypothes.is",
 iss: CLIENT_ID,
 sub: userid,
 nbf: now,
 exp: now + 600
 }
 JWT.encode payload, CLIENT_SECRET, 'HS256'
end

Using the Hypothesis API

The Hypothesis API enables you to create applications and services which read or
write data from the Hypothesis service.

	Authorization

	Real Time API

	API Reference

API Versions

API Version 1.0

Hypothesis API v1.0 is the current stable, released API version recommended for all users.

Hypothesis API v1.0 Reference

API Version 2.0

Warning

Version 2.0 of the Hypothesis API is experimental and under development. Breaking
changes may occur at any time.

Hypothesis API v2.0 Reference

Authorization

API requests which only read public data do not require authorization.

API requests made as a particular user or which manage user accounts or groups
require authorization.

	Using OAuth

Access tokens

API requests which read or write data as a specific user need to be authorized
with an access token. Access tokens can be obtained in two ways:

	By generating a personal API token on the Hypothesis developer
page [https://hypothes.is/account/developer] (you must be logged in to
Hypothesis to get to this page). This is the simplest method, however
these tokens are only suitable for enabling your application to make
requests as a single specific user.

	By registering an “OAuth client” and
implementing the OAuth authentication flow
in your application. This method allows any user to authorize your
application to read and write data via the API as that user. The Hypothesis
client is an example of an application that uses OAuth.

See Using OAuth for details of how to implement this method.

Once an access token has been obtained, requests can be authorized by putting
the token in the Authorization header.

Example request:

GET /api HTTP/1.1
Host: hypothes.is
Accept: application/json
Authorization: Bearer $TOKEN

(Replace $TOKEN with your own API token or OAuth access token.)

Client credentials

Endpoints for managing user accounts are authorized using a client ID and secret
(“client credentials”). These can be obtained by registering an OAuth
client with the grant type set to
client_credentials.

Once a client ID and secret have been obtained, requests are authorized using
HTTP Basic Auth, where the client ID is the username and the client secret is
the password.

For example, with client details as follows

Client ID: 96653f8e-80be-11e6-b32b-c7bcde86613a
Client Secret: E-hReVMuRyZbyr1GikieEw4JslaM6sDpb18_9V59PFw

you can compute the Authorization header [as described in
RFC7617](https://tools.ietf.org/html/rfc7617):

$ echo -n '96653f8e-80be-11e6-b32b-c7bcde86613a:E-hReVMuRyZbyr1GikieEw4JslaM6sDpb18_9V59PFw' | base64
OTY2NTNmOGUtODBiZS0xMWU2LWIzMmItYzdiY2RlODY2MTNhOkUtaFJlVk11UnlaYnlyMUdpa2llRXc0SnNsYU02c0RwYjE4XzlWNTlQRnc=

Example request:

POST /users HTTP/1.1
Host: hypothes.is
Accept: application/json
Content-Type: application/json
Authorization: Basic OTY2NTNmOGUtODBiZS0xMWU2LWIzMmItYzdiY2RlODY2MTNhOkUtaFJlVk11UnlaYnlyMUdpa2llRXc0SnNsYU02c0RwYjE4XzlWNTlQRnc=

{
 "authority": "example.com",
 "username": "jbloggs1",
 "email": "jbloggs1@example.com"
}

Using OAuth

OAuth [https://en.wikipedia.org/wiki/OAuth] is an open standard that enables
users to grant an application (an “OAuth client”) the ability to interact with a
service as that user, but without providing their authentication credentials
(eg. username and password) directly to that application.

OAuth clients follow an authorization process, at the end of which they get an
access token which is included in API requests to the service. This process
works as follows:

	The user clicks a login button or link in the application.

	The application sends them to an authorization page from the h service
(/oauth/authorize) via a redirect or popup, where the user will be
asked to approve access.

	If they approve, the authorization endpoint will send an authorization code
back to the application (via a redirect).

	The application exchanges the authorization code for a pair of tokens using
the h service’s POST /api/token endpoint: A short-lived access token to
authorize API requests, and a long-lived refresh token.

	When the access token expires, the application obtains a new access token
by submitting the refresh token to the POST /api/token endpoint.

To build an application for Hypothesis that uses OAuth, there are two steps:

	Register an OAuth client for your application in the h service.

	Implement the client-side part of the OAuth flow above in your application.
You may be able to use an existing OAuth 2 client library for your language
and platform.

Registering an OAuth client

To register an OAuth client on an instance of the h service for which you have
admin access, go to the /admin/oauthclients page.

To register a new client as an admin of the “h” service:

	Go to /admin/oauthclients and click “Register a new OAuth client”.

	Enter a name for a client, select “authorization_code” as the grant type and
enter the URL where your client will listen for the authorization code as the
“redirect URL”.

	Click “Register client” to create the client. Make a note of the randomly
generated client ID.

Implementing the OAuth flow

The h service implements the “Authorization code grant” [https://tools.ietf.org/html/rfc6749#section-4.1] OAuth flow, with the
following endpoints:

	Authorization endpoint: /oauth/authorize

	Token endpoint: /api/token

In order to implement the flow, your application must do the following:

	When a user clicks the “Login” link, the application should open the h
service’s authorization page at /oauth/authorize using the query
parameters described in 4.1.1 Authorization Request [https://tools.ietf.org/html/rfc6749#section-4.1.1].

Example request:

GET /oauth/authorize?client_id=510cd02e-767b-11e7-b34b-ebcff2e51409&redirect_uri=https%3A%2F%2Fmyapp.com%2Fauthorize&response_type=code&state=aa3d3062b4dbe0a1 HTTP/1.1

	After the user authorizes the application, it will receive an authorization
code via a call to the redirect URI. The application must exchange this code
for an access token by making a request to the POST /api/token endpoint
as described in 4.1.3 Access Token Request [https://tools.ietf.org/html/rfc6749#section-4.1.3].

Example request:

POST /api/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

client_id=631206c8-7792-11e7-90b3-872e79925778&code=V1bjcvKDivRUc6Sg1jhEc8ckDwyLNG&grant_type=authorization_code

Example response:

{
 "token_type": "Bearer",
 "access_token": "5768-mfoPT52ogx0Si7NkU8QFicj183Wz1O4OQmbNIvBhjTQ",
 "expires_in": 3600,
 "refresh_token": "4657-dkJGNdVn8dmhDvgCHVPmIJ2Zi0cYQgDNb7RWXkpGIZs",
 "scope": "annotation:read annotation:write"
}

	Once the application has an access token, it can make API requests and
connect to the real time API. See Authorization for details of how
to include this token in requests.

	The access token expires after a while, and must be refreshed by making a
request to the POST /api/token endpoint as described in 6. Refreshing
an access token [https://tools.ietf.org/html/rfc6749#section-6].

Example request:

POST /api/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=4657-diyCpZ9oPRBaBkaW6ZrKgI0yagvZ9yBgLmxJ9k4HfeM

Example response:

{
 "token_type": "Bearer",
 "access_token": "5768-8CHodeMUAPCLmuBooabXolnpHReBUI5cC3txCXk7sQA",
 "expires_in": 3600,
 "refresh_token": "4657-11f1CUrhZs29QvXpywDpsXFwlfl_wPEIY5N8whwUrRw",
 "scope": "annotation:read annotation:write"
}

Revoking tokens

If your application no longer needs an OAuth token, for example because a user
has logged out of your application which uses Hypothesis accounts, it is good
practice to revoke the access and refresh tokens.

Hypothesis implements the OAuth 2 Token Revocation endpoint [https://tools.ietf.org/html/rfc7009] at /oauth/revoke.

Example request:

POST /oauth/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded

token=5768-yXoTA2R94b5fB0dTBbXHSvc_IX4I1Gc_bGQ4KyjM5dY

Further reading

	“OAuth 2 simplified” [https://aaronparecki.com/oauth-2-simplified/] is a
good introduction for developers.

	The OAuth specification [https://tools.ietf.org/html/rfc6749] describes the
standard in detail.

	The OAuth Token Revocation specification [https://tools.ietf.org/html/rfc7009]
describes an extension to support revoking tokens.

Real Time API

Warning

This document describes an API that is in the early stages of being
documented and refined for public use. Details may change, and your systems
may break in the future.

In addition to the HTTP API [http://h.readthedocs.io/en/latest/api/]
Hypothesis has a WebSocket-based API that allows developers to receive near
real-time notifications of annotation events.

Overview

To use the Real Time API, you should open a WebSocket connection to the
following endpoint:

wss://hypothes.is/ws

Communication with this endpoint consists of JSON-encoded messages sent from
client to server and vice versa.

Authorization

Clients that are only interested in receiving notifications about public
annotations on a page do not need to authenticate. Clients that want to receive
notifications about all updates relevant to a particular user must
authenticate.

Server-side clients can authenticate to the Real Time API by providing an access
token in an Authorization header:

Authorization: Bearer <token>

Browser-based clients are not able to set this header due to limitations of the
the browser’s WebSocket API. Instead they can authenticate by setting an
access_token query parameter in the URL when connecting:

var socket = new WebSocket(`wss://hypothes.is/ws?access_token=${token}`)

Server messages

Each messages from the server will be either an event or a
reply:

	event

	An event is sent to clients as a result of an action taken elsewhere in
the system. For example: if an annotation is made which matches one of the
client’s subscriptions, the client will receive an event message. All
event messages have a type field.

	reply

	A reply is sent in response to a message sent by the client. All replies
have an ok field which indicates whether the server successfully
processed the client’s message, and a reply_to field which indicates
which client message the server is responding to.

Clients should ignore events with types that they do not recognise, as this will
allow us to add new events in future without breaking your client.

Note

We will add documentation for specific event types as we upgrade the
protocol.

Sending messages

All messages sent to the server must have a numeric ID which is unique for the
connection. The ID should be sent with the message in the id field. In
addition, every message sent to the server must have a valid type field. See
below for the different types of message you can send.

Message types

	ping

	whoami

ping

To verify that the connection is still open, clients can (and are encouraged to)
send a “ping” message:

{
 "id": 123,
 "type": "ping"
}

The server replies with a pong message:

{
 "ok": true,
 "reply_to": 123,
 "type": "pong"
}

whoami

Primarily for debugging purposes, you can send the server a “who am I?” message
to check whether you have authenticated correctly to the WebSocket.

{
 "id": 123,
 "type": "whoami"
}

The server will respond with a whoyouare message:

{
 "ok": true,
 "reply_to": 123,
 "type": "whoyouare",
 "userid": "acct:joe.bloggs@hypothes.is"
}

API Reference Stub

This is a stub document for the API reference to allow creating internal links
to it from the TOC tree.

In the compiled documentation it is replaced by the contents of
_extra/api-reference.

See https://github.com/sphinx-doc/sphinx/issues/701

Developing Hypothesis

The following sections document how to setup a development environment for h
and how to contribute code or documentation to the project.

	Contributor License Agreement

	Installing h in a development environment

	Accessing the admin interface

	Feature flags

	An introduction to the h codebase

	Submitting a Pull Request

	Code style

	Testing

	Writing documentation

	Serving h over SSL in development

	Making changes to model code

	Debugging SQL queries

	Environment Variables

	Development environment troubleshooting

Contributor License Agreement

Before submitting significant contributions, we ask that you sign one of
our Contributor License Agreements. This practice ensures that the
rights of contributors to their contributions are preserved and
protects the ongoing availability of the project and a commitment to
make it available for anyone to use with as few restrictions as
possible.

If contributing as an individual please sign the CLA for individuals:

	CLA for individuals, HTML [http://hypothes.is/contribute/individual-cla]

	CLA for individuals, PDF [https://d242fdlp0qlcia.cloudfront.net/uploads/2015/11/03161955/Hypothes.is-Project-Individual.pdf]

If making contributions on behalf of an employer, please sign the CLA for
employees:

	CLA for employers, HTML [http://hypothes.is/contribute/entity-cla]

	CLA for employers, PDF [https://d242fdlp0qlcia.cloudfront.net/uploads/2015/11/03161955/Hypothes.is-Project-Entity.pdf]

A completed form can either be sent by electronic mail to
license@hypothes.is or via conventional mail at the address below. If
you have any questions, please contact us.

Hypothes.is Project
2261 Market St #632
SF, CA 94114

Installing h in a development environment

The code for the https://hypothes.is/ web service and API lives in a
Git repo named h [https://github.com/hypothesis/h/]. This page will walk you through getting this code running
in a local development environment.

See also

	https://github.com/hypothesis/client/ for installing the Hypothesis client

	https://github.com/hypothesis/browser-extension for the browser extension

	To get “direct” or “in context” links working you need to install Bouncer and Via:

	https://github.com/hypothesis/bouncer

	https://github.com/hypothesis/via

See also

Development environment troubleshooting if you run into any problems during installation

You will need

Before installing your development environment you’ll need to install each of
these prerequisites:

	Git [https://git-scm.com/]

	Node [https://nodejs.org/] and npm.
On Linux you should follow
nodejs.org’s instructions for installing node [https://nodejs.org/en/download/package-manager/]
because the version of node in the standard Ubuntu package repositories is
too old.
On macOS you should use Homebrew [https://brew.sh/] to install node.

	Docker [https://docs.docker.com/install/].
Follow the instructions on the Docker website [https://docs.docker.com/install/]
to install “Docker Engine - Community”.

	pyenv [https://github.com/pyenv/pyenv].
Follow the instructions in the pyenv README to install it.
The Homebrew method works best on macOS.

Clone the Git repo

git clone https://github.com/hypothesis/h.git

This will download the code into an h directory in your current working
directory. You need to be in the h directory from the remainder of the
installation process:

cd h

Run the services with Docker Compose

Start the services that h requires using Docker Compose:

make services

Create the development data and settings

Create the database contents and environment variable settings needed to get h
working nicely with your local development instances of the rest of the
Hypothesis apps:

make devdata

See also

make devdata requires you to have a git SSH key set up that has access
to the private https://github.com/hypothesis/devdata repo. Otherwise it’ll
crash. If you can’t use make devdata (for example because you aren’t a
Hypothesis team member and don’t have access to this repo, or because you’re
setting up a production instance) then see Manually setting up the Hypothesis client integration.

Start the development server

make dev

The first time you run make dev it might take a while to start because
it’ll need to install the application dependencies and build the client assets.

This will start the server on port 5000 (http://localhost:5000), reload the
application whenever changes are made to the source code, and restart it should
it crash for some reason.

That’s it! You’ve finished setting up your h development environment.
Run make help to see all the commands that’re available for running the
tests, linting, code formatting, Python and SQL shells, etc.

Accessing the admin interface

To access the admin interface, a user must be logged in and have admin
permissions. To grant admin permissions to a user, first create a user,
or use an existing one, and then promote that user to be an admin:

Create the user (if needed)

tox -qe dev -- sh bin/hypothesis --dev user add

This will prompt you to enter the user’s

	unique name

	unique email address

	password

Once you have entered that information, then you may promote the
user to admin.

Promote to admin level

Note

Replace <username> with the value you entered in the previous step
or appropriate user’s name.

tox -qe dev -- sh bin/hypothesis --dev user admin <username>

When this user signs in they can now access the administration panel at
/admin. The administration panel has options for managing users and optional
features.

Feature flags

Features flags allow admins to enable or disable features for certain groups
of users. You can enable or disable them from the Administration Dashboard.

To access the Administration Dashboard, you will need to first create a
user account in your local instance of H and then give that account
admin access rights using H’s command-line tools.

See the Accessing the admin interface documentation for information
on how to give the initial user admin rights and access the Administration
Dashboard.

An introduction to the h codebase

If you’re new to the team, or to the Hypothesis project, you probably want to
get up to speed as quickly as possible so you can make meaningful improvements
to h. This document is intended to serve as a brief “orientation guide” to
help you find your way around the codebase.

This document is a living guide, and is at risk of becoming outdated as we
continually improve the software. If you spot things that are out of date,
please submit a pull request to update this document.

This guide was last updated on 11 Apr 2017.

A lightning guide to Pyramid

The h codebase is principally a Pyramid [https://trypyramid.com] web application. Pyramid is more of
a library of utilities than a “framework” in the sense of Django or Rails. As
such, the structure (or lack thereof) in our application is provided by our own
conventions, and not the framework itself.

Important things to know about Pyramid that may differ from other web
application frameworks you’ve used:

	Application setup is handled explicitly by a distinct configuration step at
boot. You’ll note includeme functions in some modules – these are part of
that configuration system.

	The request object is passed into views explicitly rather than through a
threadlocal (AKA “global variable”), and is often passed around explicitly to
provide request context to other parts of the application. This has a number
of advantages but can get a bit messy if not managed appropriately.

You can read more about the distinguishing features of Pyramid in the excellent
Pyramid documentation [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/introduction.html].

Application components

The important parts of the h application can be broken down into:

	Models

	SQLAlchemy [http://www.sqlalchemy.org/] models representing the data objects that live in our database.
These live in h.models.

	Views (and templates)

	Views are code that is called in response to a particular request. Templates
can be used to render the output of a particular view, typically as HTML.

With a few exceptions, views live in h.views, and templates live
in the h/templates/ directory.

	Services

	Putting business logic in views can quickly lead to views that are difficult
to test. Putting business logic in models can lead to model objects with a
large number of responsibilities.

As such, we put most business logic into so-called “services.” These are
objects with behaviour and (optionally) state, which can be retrieved from
the request object.

Services live in h.services.

	Tasks

	Tasks are bits of code that run in background workers and which can be
easily triggered from within the context of a request.

We use Celery [http://www.celeryproject.org/] for background tasks, and task definitions can be found in
h.tasks.

There are a number of other modules and packages in the h repository. Some
of these (e.g. h.auth, h.settings) do one-off setup for a
booting application. Others may be business logic that dates from before we
introduced the services pattern [https://h.readthedocs.io/en/latest/arch/adr-002/], and thus might be more appropriately moved
into a service in the future.

Submitting a Pull Request

To submit code or documentation to h you should submit a pull request.

For trivial changes, such as documentation changes or minor errors,
PRs may be submitted directly to main. This also applies to changes
made through the GitHub editing interface. Authors do not need to
sign the CLA for these, or follow fork or branch naming guidelines.

For any non-trivial changes, please create a branch for review. Fork
the main repository and create a local branch. Later, when the branch
is ready for review, push it to a fork and submit a pull request.

Discussion and review in the pull request is normal and expected. By
using a separate branch, it is possible to push new commits to the
pull request branch without mixing new commits from other features or
mainline development.

Some things to remember when submitting or reviewing a pull request:

	Your pull request should contain one logically separate piece of work, and
not any unrelated changes.

	When writing commit messages, please bear the following in mind:

	http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	https://github.com/blog/831-issues-2-0-the-next-generation

Please minimize issue gardening by using the GitHub syntax for closing
issues with commit messages.

	We recommend giving your branch a relatively short, descriptive,
hyphen-delimited name. fix-editor-lists and tabbed-sidebar are good
examples of this convention.

	Don’t merge on feature branches. Feature branches should merge into upstream
branches, but never contain merge commits in the other direction.
Consider using --rebase when pulling if you must keep a long-running
branch up to date. It’s better to start a new branch and, if applicable, a
new pull request when performing this action on branches you have published.

	Code should follow our coding standards.

	All pull requests should come with code comments. For Python code these
should be in the form of Python docstrings [http://legacy.python.org/dev/peps/pep-0257/]. For AngularJS code please use
ngdoc [https://github.com/angular/angular.js/wiki/Writing-AngularJS-Documentation]. Other documentation can be put into the docs/ subdirectory, but
is not required for acceptance.

	All pull requests should come with unit tests. For the time being, functional
and integration tests should be considered optional if the project does not
have any harness set up yet.

For how to run the tests, see Running the tests, linters and code formatters.

Code style

This section contains some code style guidelines for the different programming
languages used in the project.

Python

Follow PEP 8 [https://www.python.org/dev/peps/pep-0008/], the linting tools
below can find PEP 8 problems for you automatically.

Docstrings

All public modules, functions, classes, and methods should normally have
docstrings. See PEP 257 [https://www.python.org/dev/peps/pep-0257/] for
general advice on how to write docstrings (although we don’t write module
docstrings that describe every object exported by the module).

The pep257 tool (which is run by prospector, see below) can point out
PEP 257 violations for you.

It’s good to use Sphinx references in docstrings because they can be syntax
highlighted and hyperlinked when the docstrings are extracted by Sphinx into
HTML documentation, and because Sphinx can print warnings for references that
are no longer correct:

	Use Sphinx Python cross-references [http://www.sphinx-doc.org/en/stable/domains.html#cross-referencing-python-objects]
to reference other Python modules, functions etc. from docstrings (there are
also Sphinx domains for referencing
objects from other programming languages, such as
JavaScript [http://www.sphinx-doc.org/en/stable/domains.html#the-javascript-domain]).

	Use Sphinx info field lists [http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists]
to document parameters, return values and exceptions that might be raised.

	You can also use reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html]
to add markup (bold, code samples, lists, etc) to docstrings.

Linting

We use Flake8 [https://pypi.python.org/pypi/flake8] for linting Python code.
Lint checks are run as part of our continuous integration builds and can be run
locally using make backend-lint. You may find it helpful to use a flake8
plugin for your editor to get live feedback as you make changes.

Automated code formatting

Hypothesis projects use Black [https://github.com/psf/black] for automated
code formatting. Formatting is checked as part of continuous integration builds
and can be run locally using make format. You may find it helpful to use
a Black plugin for your editor to enable automated formatting as you work.

Additional reading

	Although we don’t strictly follow all of it, the
Google Python Style Guide [https://google.github.io/styleguide/pyguide.html]
contains a lot of good advice.

Front-end Development

See the Hypothesis Front-end Toolkit [https://github.com/hypothesis/frontend-toolkit] repository for documentation on code
style and tooling for JavaScript, CSS and HTML.

We use ESLint [https://eslint.org] for linting front-end code.
Use make frontend-lint to run ESlint locally. You may find it helpful to
install an ESLint plugin for your editor to get live feedback as you make
changes.

Testing

This section covers running and writing tests for the h codebase.

Running the tests, linters and code formatters

To run the unit tests (both backend and frontend) run:

make test

To run the functional tests:

make functests

To format your code correctly:

make format

To run the linter:

make lint

For many more useful make commands see:

make help

Running the backend tests only

To run the backend test suite only call tox directly. For example:

Run the backend unit tests:
tox

Run the backend functional tests:
tox -qe functests

Run only one test directory or test file:
tox tests/h/models/annotation_test.py
tox -qe functests tests/functional/api/test_profile.py

To pass arguments to pytest put them after a `--`:
tox -- --exitfirst --pdb --failed-first tests/h
tox -qe functests -- --exitfirst --pdb --failed-first tests/functional

See all of pytest's command line options:
tox -- -h

Running the frontend tests only

To run the frontend test suite only, run the appropriate test task with gulp.
For example:

make gulp args=test

When working on the front-end code, you can run the Karma test runner in
auto-watch mode which will re-run the tests whenever a change is made to the
source code. To start the test runner in auto-watch mode, run:

make gulp args=test-watch

To run only a subset of tests for front-end code, use the --grep
argument or mocha’s .only() [http://jaketrent.com/post/run-single-mocha-test/] modifier.

make gulp args=test-watch --grep <pattern>

Writing tests

Sean Hammond has written up a guide to getting started [https://www.seanh.cc/post/running-the-h-tests] running and writing
our tests, which covers some of the tools we use (tox and pytest) and
some of the testing techniques they provide (factories and parametrization).

Unit and functional tests

We keep our functional tests separate from our unit tests, in the
tests/functional directory. Because these are slow to run, we will usually
write one or two functional tests to check a new feature works in the common
case, and unit tests for all the other cases.

Using mock objects

The mock library lets us construct fake versions of our objects to help with
testing. While this can make it easier to write fast, isolated tests, it also
makes it easier to write tests that don’t reflect reality.

In an ideal world, we would always be able to use real objects instead of stubs
or mocks, but sometimes this can result in:

	complicated test setup code

	slow tests

	coupling of test assertions to non-interface implementation details

For new code, it’s usually a good idea to design the code so that it’s easy to
test with “real” objects, rather than stubs or mocks. It can help to make
extensive use of value objects [https://martinfowler.com/bliki/ValueObject.html] in tested interfaces (using
collections.namedtuple from the standard library, for example) and apply
the functional core, imperative shell [https://www.destroyallsoftware.com/talks/boundaries] pattern.

For older code which doesn’t make testing so easy, or for code that is part of
the “imperative shell” (see link in previous paragraph) it can sometimes be
hard to test what you need without resorting to stubs or mock objects, and
that’s fine.

Writing documentation

To build the documentation issue the make dirhtml command from the docs
directory:

cd docs
make dirhtml

When the build finishes you can view the documentation by running a static
web server in the newly generated _build/dirhtml directory. For example:

cd _build/dirhtml; python -m SimpleHTTPServer; cd -

API Documentation

The Hypothesis API documentation is rendered using ReDoc [https://github.com/Rebilly/ReDoc],
a JavaScript tool for generating OpenAPI/Swagger reference documentation.

The documentation-building process above will regenerate API documentation output without intervention,
but if you are making changes to an API description document (e.g. hypothesis-v1.yaml
for v1 on the API),you may find it convenient to use the
ReDoc CLI tool [https://github.com/Rebilly/ReDoc/blob/main/cli/README.md],
which can watch the spec file for changes:

npm install -g redoc-cli
redoc-cli serve [path-to-description-document] --watch

Serving h over SSL in development

If you want to annotate a site that’s served over HTTPS then you’ll need to
serve h over HTTPS as well, since the browser will refuse to load external
scripts (eg. H’s bookmarklet) via HTTP on a page served via HTTPS.

To serve your local dev instance of h over HTTPS:

	Generate a private key and certificate signing request:

openssl req -newkey rsa:1024 -nodes -keyout .tlskey.pem -out .tlscsr.pem

	Generate a self-signed certificate:

openssl x509 -req -in .tlscsr.pem -signkey .tlskey.pem -out .tlscert.pem

	Run the dev server with SSL:

make devssl

	Since the certificate is self-signed, you will need to instruct your browser to
trust it explicitly by visiting https://localhost:5000 and selecting the option
to bypass the validation error.

Troubleshooting

Insecure Response errors in the console

The sidebar fails to load and you see net::ERR_INSECURE_RESPONSE errors in
the console. You need to open https://localhost:5000 and tell the browser to allow
access to the site even though the certificate isn’t known.

Server not found, the connection was reset

When you’re serving h over SSL in development making non-SSL requests to h
won’t work.

If you get an error like Server not found or The connection was reset
in your browser (it varies from browser to browser), possibly accompanied by a
gunicorn crash with
AttributeError: 'NoneType' object has no attribute 'uri', make sure that
you’re loading https://localhost:5000 in your browser, not http://.

WebSocket closed abnormally, code: 1006

If you see the error message
Error: WebSocket closed abnormally, code: 1006 in your browser,
possibly accompanied by another error message like
Firefox can’t establish a connection to the server at wss://localhost:5001/ws,
this can be because you need to add a security exception to allow your browser
to connect to the websocket. Visit https://localhost:5001 in a browser tab and
add a security exception then try again.

403 response when connecting to WebSocket

If your browser is getting a 403 response when trying to connect to the
WebSocket along with error messages like these:

	WebSocket connection to ‘wss://localhost:5001/ws’ failed: Error during WebSocket handshake: Unexpected response code: 403

	Check that your H service is configured to allow WebSocket connections from https://127.0.0.1:5000

	WebSocket closed abnormally, code: 1006

	WebSocket closed abnormally, code: 1001

	Firefox can’t establish a connection to the server at wss://localhost:5001/ws

make sure that you’re opening https://localhost:5000 in your browser and
not https://127.0.0.1:5000.

Making changes to model code

Guidelines for writing model code

No length limits on database columns

Don’t put any length limits on your database columns (for example
sqlalchemy.Column(sqlalchemy.Unicode(30), ...)). These can cause painful
database migrations.

Always use sqlalchemy.UnicodeText() with no length limit as the type for
text columns in the database (you can also use sqlalchemy.Text() if you’re
sure the column will never receive non-ASCII characters).

When necessary validate the lengths of strings in Python code instead.
This can be done using SQLAlchemy validators [http://docs.sqlalchemy.org/en/rel_1_0/orm/mapped_attributes.html]
in model code.

View callables for HTML forms should also use Colander schemas to validate user
input, in addition to any validation done in the model code, because Colander
supports returning per-field errors to the user.

Creating a database migration script

If you’ve made any changes to the database schema (for example: added or
removed a SQLAlchemy ORM class, or added, removed or modified a
sqlalchemy.Column on an ORM class) then you need to create a database
migration script that can be used to upgrade the production database from the
previous to your new schema.

We use Alembic [https://alembic.readthedocs.io/en/latest/] to create and run
migration scripts. See the Alembic docs (and look at existing scripts in
h/migrations/versions [https://github.com/hypothesis/h/tree/main/h/migrations/versions])
for details. The make db command is a wrapper around Alembic. The
steps to create a new migration script for h are:

	Create the revision script by running makge db args=revision, for example:

make db args='revision -m "Add the foobar table"'

This will create a new script in h/migrations/versions/.

	Edit the generated script, fill in the upgrade() and downgrade()
methods.

See https://alembic.readthedocs.io/en/latest/ops.html#ops for details.

Note

Not every migration should have a downgrade() method. For example if
the upgrade removes a max length constraint on a text field, so that
values longer than the previous max length can now be entered, then a
downgrade that adds the constraint back may not work with data created
using the updated schema.

	Test your upgrade() function by upgrading your database to the most
recent revision. This will run all migration scripts newer than the revision
that your db is currently stamped with, which usually means just your new
revision script:

make db

After running this command inspect your database’s schema to check that it’s
as expected, and run h to check that everything is working.

Note

You should make sure that there’s some repesentative data in the relevant
columns of the database before testing upgrading and downgrading it.
Some migration script crashes will only happen when there’s data present.

	Test your downgrade() function:

make db args='downgrade -1'

After running this command inspect your database’s schema to check that it’s
as expected. You can then upgrade it again:

make db args='upgrade +1'

Batch deletes and updates in migration scripts

It’s important that migration scripts don’t lock database tables for too long,
so that when the script is run on the production database concurrent database
transactions from web requests aren’t held up.

An SQL DELETE command acquires a FOR UPDATE row-level lock on the
rows that it selects to delete. An UPDATE acquires a FOR UPDATE lock on
the selected rows if the update modifies any columns that have a unique index
on them that can be used in a foreign key. While held this FOR UPDATE lock
prevents any concurrent transactions from modifying or deleting the selected
rows.

So if your migration script is going to DELETE or UPDATE a large number
of rows at once and committing that transaction is going to take a long time
(longer than 100ms) then you should instead do multiple DELETEs or
UPDATEs of smaller numbers of rows, committing each as a separate
transaction. This will allow concurrent transactions to be sequenced in-between
your migration script’s transactions.

For example, here’s some Python code that deletes all the rows that match a
query in batches of 25:

query = <some sqlalchemy query>
query = query.limit(25)
while True:
 if query.count() == 0:
 break
 for row in query:
 session.delete(row)
 session.commit()

Separate data and schema migrations

It’s easier for deployment if you do data migrations (code that creates,
updates or deletes rows) and schema migrations (code that modifies the
database schema, for example adding a new column to a table) in separate
migration scripts instead of combining them into one script. If you have a
single migration that needs to modify some data and then make a schema change,
implement it as two consecutive migration scripts instead.

Don’t import model classes into migration scripts

Don’t import model classes, for example from h.models import Annotation,
in migration scripts. Instead copy and paste the Annotation class into your
migration script.

This is because the script needs the schema of the Annotation class
as it was at a particular point in time, which may be different from the
schema in h.models.Annotation when the script is run in the future.

The script’s copy of the class usually only needs to contain the definitions of
the primary key column(s) and any other columns that the script uses, and only
needs the name and type attributes of these columns. Other attributes of the
columns, columns that the script doesn’t use, and methods can usually be left
out of the script’s copy of the model class.

Troubleshooting migration scripts

(sqlite3.OperationalError) near “ALTER”

SQLite doesn’t support ALTER TABLE. To get around this, use
Alembic’s batch mode [https://alembic.readthedocs.io/en/latest/batch.html].

Cannot add a NOT NULL column with default value NULL

If you’re adding a column to the model with nullable=False then when the
database is upgraded it needs to insert values into this column for each of
the already existing rows in the table, and it can’t just insert NULL as it
normally would. So you need to tell the database what default value to insert
here.

default= isn’t enough (that’s only used when the application is creating
data, not when migration scripts are running), you need to add a
server_default= argument to your add_column() call.

See the existing migration scripts for examples.

Debugging SQL queries

You can turn on SQL query logging by setting the DEBUG_QUERY
environment variable (to any value). Set it to the special value trace to
turn on result set logging as well.

Environment Variables

This section documents the environment variables supported by h.

	
CLIENT_URL

	The URL at which the Hypothesis client code is hosted.
This is the URL to the client entrypoint script, by default
https://cdn.hypothes.is/hypothesis.

	
CLIENT_OAUTH_ID

	The OAuth client ID for the Hypothesis client on pages that embed it using
the service’s /embed.js script.

	
CLIENT_RPC_ALLOWED_ORIGINS

	The list of origins that the client will respond to cross-origin RPC
requests from. A space-separated list of origins. For example:
https://lti.hypothes.is https://example.com http://localhost.com:8001.

Development environment troubleshooting

Cannot connect to the Docker daemon

If you get an error that looks like this when trying to run docker
commands:

Cannot connect to the Docker daemon. Is the docker daemon running on this host?
Error: failed to start containers: postgres

it could be because you don’t have permission to access the Unix socket that
the docker daemon is bound to. On some operating systems (e.g. Linux) you need
to either:

	Take additional steps during Docker installation to give your Unix user
access to the Docker daemon’s port (consult the installation
instructions for your operating system on the Docker website), or

	Prefix all docker commands with sudo.

pyenv errors on macOS

pyenv install commands might fail on macOS with error messages such as:

	“symbol(s) not found for architecture x86_64”

	“ERROR: The Python zlib extension was not compiled. Missing the zlib?”

Read pyenv’s Common Build Problems page [https://github.com/pyenv/pyenv/wiki/common-build-problems]
for the solutions to these.

Index

 C
 | E
 | R

C

 	
 	Client ID

 	
 	Client secret

 	CLIENT_URL

E

 	
 	
 environment variable

 	CLIENT_OAUTH_ID

 	CLIENT_RPC_ALLOWED_ORIGINS

 	CLIENT_URL, [1]

 	
 	event

R

 	
 	reply

ADR 1: PostgreSQL persistence for annotations

Context

The annotations stored by the Hypothesis web service are arguably its most
critical data. Until now they have been stored in an Elasticsearch index,
primarily as a result of historical accident (this is how annotator-store [https://github.com/openannotation/annotator-store.],
which was originally intended as a demonstrator application, stored
annotations). Alongside, we store “document metadata” which describes
relationships between different URIs, as scraped from metadata within annotated
pages.

While storing annotation data directly in Elasticsearch makes for a very simple
JSON API (data is passed essentially unaltered by the web application straight
to Elasticsearch) it has a number of disadvantages, including:

	The persistence guarantees made by Elasticsearch are weak relative to most
databases, and while many data loss bugs [https://aphyr.com/posts/317-jepsen-elasticsearch] have been fixed, it is not
unreasonable to have ongoing concerns about durability of data in
Elasticsearch.

	The lack of database-enforced schema validation means that maintaining data
validity becomes an application-layer concern. The fact that Elasticsearch
also lacks transactional write capabilities makes certain kinds of validation
checks nearly impossible to implement correctly.

	Serving as both primary persistence store and search index causes tension
between the desire to keep data normalised (to simplify the process of
ensuring data consistency), and to keep data in a format suitable for
efficient search, which usually implies denormalisation.

	As requirements for search and query change, it is desirable to be able to
iterate on the format of the search index. When the search index is also the
primary data store, this introduces additional risks which typically deter or
at least increase the cost of such iteration.

	Lastly, making changes to the internal schema of annotation data in
Elasticsearch requires the creation of custom in-house data migration tools.
In contrast, most relational database systems have established schema and
data migration libraries available.

Decision

We will migrate all annotation data, and all associated document metadata, into
a PostgreSQL database, which will serve as the primary data store for such data.

We will continue to use Elasticsearch as a search index, but the data stored
within will be “ephemeral” – that is, we will always be able to regenerate it
from data stored in PostgreSQL.

The internal schemas of the data stored in PostgreSQL will be designed to
simplify data manipulation while ensuring self-consistency.

We will build appropriate tools to ensure that the Elasticsearch index is kept
up-to-date as data in the PostgreSQL database changes.

Status

Accepted.

Consequences

These changes will make it easier and safer to iterate on the internal schemas
of annotation storage, thanks to improved migration tooling for PostgreSQL and
the presence of transactional updates.

They will also make it easier and safe to iterate on the format of the search
index used to search annotations, thanks to the ephemeral nature of the data in
the search index.

The potential future minimal requirements for a program which reuses the code
which serves our “annotation API” now include PostgreSQL.

ADR 2: Service layer for testable business logic

Context

As we are currently using it, Pyramid is a model-view-template (MVT) web
application framework. Models describe domain objects and manage their
persistence, views handle HTTP requests, and templates define the user
interface.

“Business logic” is a shorthand for the heart of what the application actually
does. It is the code that manages the interactions of our domain objects, rather
than code that handles generic concerns such as HTTP request handling or SQL
generation.

It is not always clear where to put “business logic” in an MVT application:

	Some logic can live with its associated domain object(s) in the models layer,
but this quickly gets complicated when dealing with multiple models from
different parts of the system. It is easy to create circular import
dependencies.

	Putting logic in the views typically makes them extremely hard to test, as
this makes a single component responsible for receiving and validating data
from the client, performing business logic operations, and preparing response
data.

There are other problems associated with encapsulating business logic in views.
Business logic typically interacts directly with the model layer. This means
that either a) all view tests (including those which don’t test business logic)
need a database, or b) we stub out the models layer for some or all view tests.
Stubbing out the database layer in a way that doesn’t couple tests to the view
implementation is exceedingly difficult, in part due to the large interface of
SQLAlchemy.

One way to resolve this problem is to introduce a “services layer” between views
and the rest of the application, which is intended to encapsulate the bulk of
application business logic and hide persistence concerns from the views.

This blog post [http://dev.nando.audio/2014/04/01/large_apps_with_sqlalchemy__architecture.html] by Nando Farestan may help provide additional background
on the motivation for a “services layer.”

Decision

We will employ a “services layer” to encapsulate business logic that satifies
one or both of the following conditions:

	The logic is of “non-trivial” complexity. This is clearly open to
interpretation. As a rule of thumb: if you have to ask yourself the question
“is this trivial” then it is probably not.

	The business logic handles more than one type of domain objects.

The services layer will be tested independently of views, and used from both
views and other parts of the application which have access to a request object.

Services will take the form of instances with some defined interface which are
associated with a request and can be retrieved from the request object.

Status

Accepted.

Consequences

We hope that adding a services layer will substantially simplify the process of
writing and, in particular, testing view code.

Views tests will likely be able to run faster, as they can be unit tested
against a stubbed service, rather than having to hit the database.

We will no longer need to stub or mock SQLAlchemy interfaces for testing, thus
reducing the extent to which tests are coupled to the implementation of the
system under test.

To achieve these things we are introducing additional concepts (“service”,
“service factory”) the purpose of which may not be immediately apparent,
especially to programmers new to the codebase.

There will likely be non-service-based views code in the codebase for some time,
thus we are potentially introducing inconsistency between different parts of the
code.

ADR 3: Resource-oriented, hierarchical API

Context

The problem

We don’t currently have any explicitly agreed conventions or patterns for how we
structure our API. As different parts of our API are implemented in different
ways, people looking to integrate with our API are having a harder time than
necessary learning how it works.

The lack of agreed conventions also slows us down when designing new
functionality, as we don’t have a standard set of patterns to draw from.

Extra context

The part of our API that deals with creating, retrieving and modifying
annotations is currently resource-based, with GET, POST, PATCH and
DELETE requests to suitable URLs. This is also the style used in the W3C
Web Annotation Protocol [https://www.w3.org/TR/annotation-protocol/].

Some examples of other APIs that could provide inspiration:

	The GitHub API [https://developer.github.com/v3/] (resource-based,
hierarchical style)

	The Slack Web API [https://api.slack.com/web] (RPC style)

Decision

We’re going to build our API in a resource-oriented, broadly RESTful style (with
standard HTTP verbs operating on resources at URLs).

We’ll nest resources liberally. For instance, when flagging an annotation for a
moderator’s attention, we would use a PUT request to a sub-resource of the
annotation:

PUT /api/annotations/<annid>/flag
Content-Type: application/json

{"reason": "spam"}

One advantage of this method is that parameters can often be made mandatory by
construction: in the example above, it becomes impossible to flag an annotation
without providing the annotation ID. This is similar to the approach GitHub
takes for locking issues [https://developer.github.com/v3/issues/#lock-an-issue].

The operation to remove such a flag would then be expressed with a DELETE
request to the same URL:

DELETE /api/annotations/<annid>/flag

An example of a pattern we are not choosing to follow is to post these flags
as top-level entities:

POST /api/flags
Content-Type: application/json

{"annotation": "<annid>"}

While this is a reasonable approach to take, we think that the more hierarchical
approach will make the relationships between different entities (in this case,
annotations and their associated flags) easier to understand.

Status

Accepted.

Consequences

With a set of default patterns for how we implement new functionality (or
restructure existing functionality), this should result in a more consistent API
and an easier time for those trying to integrate with our systems.

Another benefit should be that this speeds up development, by giving us a base
set of patterns from which to design new functionality. This should also make it
easier for reviewers, as they can more confidently review a proposal if it
follows these conventions, or look for more context if it doesn’t.

Architecture decision records

Here you will find documents which describe significant architectural decisions
made or proposed when developing the Hypothesis software. We record these in
order to provide a reference for the history, motivation, and rationale for past
decisions.

ADRs

	ADR 1: PostgreSQL persistence for annotations

	ADR 2: Service layer for testable business logic

	ADR 3: Resource-oriented, hierarchical API

What are ADRs?

Quoting from the blog post which inspired this repository [http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions], an architecture
decision record, or ADR, is:

…a short text file in a [specific] format…[which] describes a set of
forces and a single decision in response to those forces. Note that the
decision is the central piece here, so specific forces may appear in
multiple ADRs.

The standard sections of an ADR are:

Title These documents have names that are short noun phrases. For
example, “ADR 1: Deployment on Ruby on Rails 3.0.10” or “ADR 9: LDAP for
Multitenant Integration”

Context This section describes the forces at play, including
technological, political, social, and project local. These forces are
probably in tension, and should be called out as such. The language in this
section is value-neutral. It is simply describing facts.

Decision This section describes our response to these forces. It is
stated in full sentences, with active voice. “We will …”

Status A decision may be “proposed” if the project stakeholders haven’t
agreed with it yet, or “accepted” once it is agreed. If a later ADR changes
or reverses a decision, it may be marked as “deprecated” or “superseded”
with a reference to its replacement.

Consequences This section describes the resulting context, after
applying the decision. All consequences should be listed here, not just the
“positive” ones. A particular decision may have positive, negative, and
neutral consequences, but all of them affect the team and project in the
future.

 The Hypothesis browser extensions now live in their own repository [https://github.com/hypothesis/browser-extension].

Manually setting up the Hypothesis client integration

The Hypothesis annotation client [https://github.com/hypothesis/client]
needs an OAuth client in order to request access tokens from h. In a
development environment this can be set up automatically by running make
devdata. If you can’t run make devdata, or if you’re setting up h in a
production environment, follow the instructions below to create an OAuth client
and configure the Hypothesis client to use it.

	Create an OAuth client for the Hypothesis client:

	Log in to your h instance as an admin user and go to
<YOUR_H_INSTANCE>/admin/oauthclients

	Select “Register a new OAuth client”

	Choose a name (eg. “Client”) and set the redirect URL to
<YOUR_H_INSTANCE>/app.html. Leave the other settings at their default
values.

	After creating the client make a note of the randomly generated client
ID, you’ll need it for the next step.

	Set the following environment variables to tell h to configure the
Hypothesis client to use the OAuth client you just created:

export CLIENT_OAUTH_ID=<THE_CLIENT_ID_OF_THE_OAUTH_CLIENT_YOU_CREATED_ABOVE>
export CLIENT_URL=<YOUR_CLIENT_URL>

In a development environment CLIENT_URL would be http://localhost:3001/hypothesis.
See CLIENT_URL.

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to the h Documentation!

 		
 The Hypothesis community

 		
 Advice for publishers

 		
 Generating authorization grant tokens

 		
 Overview

 		
 Token format

 		
 Examples

 		
 Using the Hypothesis API

 		
 Authorization

 		
 Using OAuth

 		
 Access tokens

 		
 Client credentials

 		
 Real Time API

 		
 Overview

 		
 Authorization

 		
 Server messages

 		
 Sending messages

 		
 API Reference

 		
 API Versions

 		
 API Version 1.0

 		
 API Version 2.0

 		
 Developing Hypothesis

 		
 Contributor License Agreement

 		
 Installing h in a development environment

 		
 You will need

 		
 Clone the Git repo

 		
 Run the services with Docker Compose

 		
 Create the development data and settings

 		
 Start the development server

 		
 Accessing the admin interface

 		
 Feature flags

 		
 An introduction to the h codebase

 		
 A lightning guide to Pyramid

 		
 Application components

 		
 Submitting a Pull Request

 		
 Code style

 		
 Python

 		
 Front-end Development

 		
 Testing

 		
 Running the tests, linters and code formatters

 		
 Writing tests

 		
 Writing documentation

 		
 API Documentation

 		
 Serving h over SSL in development

 		
 Troubleshooting

 		
 Making changes to model code

 		
 Guidelines for writing model code

 		
 Creating a database migration script

 		
 Debugging SQL queries

 		
 Environment Variables

 		
 Development environment troubleshooting

 		
 Cannot connect to the Docker daemon

 		
 pyenv errors on macOS

_static/ajax-loader.gif

